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Abstract

American cities have been growing more segregated by income. A leading explanation

is that the rise in income inequality has increased high-income households’ willingness

to pay to cluster together. Others have blamed it on ever more restrictive housing supply

regulation. I show that these explanations are complementary. To study the interaction of

these two forces, I develop a quantitative urban model with a novel margin of endogenous

housing supply regulation. Municipalities trade off the profits from new construction

with the reduction in value of existing housing that it incurs, and I show that this

generates a feedback loop between neighbourhood income and regulation. Municipalities

endogenously have stronger incentives to tighten regulation for richer neighbourhoods,

pricing out poor households and exacerbating spatial inequality. Quantifying my model

with publicly available data, I find that the rise in the college wage premium since

1980 explains 40-86% of the increase in income segregation in New York, Los Angeles,

and Chicago, and that 6-29% of this effect comes from the endogenous tightening of

regulation.
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1 Introduction

America’s neighbourhoods are staggeringly unequal. The rich live in areas of great

wealth, and the poor in areas of concentrated poverty. This pattern of income segregation

has grown substantially over the past four decades. Why is this? Some have attributed

it to the rise in income inequality, and in particular the growth of the college wage

premium (Fogli et al., 2025; Couture et al., 2024). However, others have attributed income

segregation to exclusionary housing supply regulation, such as single-family zoning and

minimum lot sizes (Trounstine, 2020; Macek, 2024). Such regulation has also increased

substantially over the same period (Ganong and Shoag, 2017).

In this paper I show that these narratives, which might seem unrelated, are in fact

complementary. First, I incorporate a theory of endogenously formed housing supply

regulation into a spatial model of within-city income sorting. My framework generates

a feedback loop between neighbourhood income and regulation. As a neighbourhood

becomes richer, incentives to block new construction get stronger. Tighter housing

supply regulation, in turn, prices out poorer households. My model also provides a way

to measure the strength of regulation at the census tract level using publicly available data.

Using the model, I then assess the extent to which the rise in the college wage premium

since 1980 has increased income segregation precisely by inducing more restrictive

regulation in the wealthiest neighbourhoods. I show that this rise explains 40-86% of the

increase in income segregation in New York, Los Angeles and Chicago, and that 6-29% of

this effect is due to endogenous changes in housing supply regulation.

In my framework, households with different skill types choose whether to live in the

city (a Metropolitan Statistical Area) or the rest of the US. Conditional on living in the

city, households choose a neighbourhood (a census tract) to live in, and a neighbourhood

to work in. Aside from wages and housing prices, they value endogenous neighbour-

hood amenities that capture positive utility spillovers from living close to high-income

households (Diamond, 2016; Almagro and Domínguez-Iino, 2025). Crucially, high-income

households are less price-elastic in their demand for housing. That is, housing prices

are less important in determining their location choices than they are for poor house-

holds (Diamond, 2016; Finlay and Williams, 2022). As a result, where regulation restricts

housing supply and pushes up prices, the share of poor households falls (Macek, 2024).

This represents the first half of the feedback loop between regulation and neighbourhood

income.

The neighbourhoods of the city are divided into municipalities. To build new housing,
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developers must obtain permits from the relevant municipality. Each permit creates a

concentrated benefit and diffuse costs: it allows a developer to make a profit, but this

new construction reduces the value of the existing housing stock in the jurisdiction.

The municipality assesses each permit application individually, and trades off these two

competing effects (Glaeser et al., 2005; Hilber and Robert-Nicoud, 2013). It issues permits

in each neighbourhood until it is indifferent between the marginal developer’s profit and

preventing the decline in inframarginal property values, subject to a neighbourhood-

specific weight which I call ‘developer power’.

I show that the equilibrium tightness of regulation can be decomposed into two

terms: (i) the institutional propensity of municipalities to block new housing, which

depends on developer power; and (ii) their economic incentive to do so. This second

term represents the decline in property values that new construction induces, and is

endogenous to the income composition of the neighbourhood. Since richer households

have less elastic demand for housing, new development reduces prices more in high-

income neighbourhoods. Municipalities therefore have stronger incentives to restrict

housing supply in these neighbourhoods. This completes the feedback loop: regulation

makes neighbourhoods richer, and richer neighbourhoods adopt stricter regulation.

A key empirical challenge in solving my model is that municipalities’ choices depend

on the Jacobian matrix of the housing demand system induced by households’ location

choices across the entire metropolitan area. That is, they depend on the elasticity of

housing demand in one neighbourhood to prices in all neighbourhoods. Unlike in

standard quantitative spatial models, it is central to my theory that these elasticities

vary with the distribution of income and prices across space. Moreover, the presence

of endogenous amenities introduces an ‘inner fixed point’ into the system of equations

defining these elasticities. The large number of neighbourhoods in my counterfactual

solutions makes this computation nontrivial. Solving the system that defines the Jacobian

by brute force takes several hours. I show, however, that the size of this system can be

reduced substantially by exploiting the ‘gravity’ structure of commuting flows. This

renders the problem computationally tractable, and enables me to solve it in under two

minutes for any metropolitan area in the US.

I quantify my model with publicly available data. First, I digitise construction cost

tables published by a large data aggregator, and map these to data on the mix of housing

types in each census tract. This gives me an estimate of marginal construction costs

at the neighbourhood level. I combine this with census data on housing prices and

households’ location choices. Then, using the numerical procedure described above, I

invert municipalities’ optimality conditions to obtain implied developer power at the
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census tract level for almost all of the urban United States. This provides a high resolution

geography of the institutional propensity for regulation. In simple terms, developer

power is inferred to be low in sparsely populated neighbourhoods with high markups of

housing prices above marginal construction costs.

Housing supply regulation is notoriously difficult to measure, since it is defined

differently in thousands of documents throughout the country. The canonical existing

measure, the Wharton Residential Land Use Regulatory Index (Gyourko et al., 2021),

is based on a survey of a subset of the municipalities in the US. With minimal data

requirements, my measure of developer power instead provides fine spatial detail over

a much broader swath of the urban US. It also correlates well with the Wharton index,

despite coming from completely different data. Aside from developer power, I recover

neighbourhood-specific amenity and productivity terms. Taken together, this set of

unobserved fundamentals allows me to conduct counterfactual solutions of the model.

I then usemy quantifiedmodel to study the rise in income segregation in the US. I show

that the rising college wage premium has increased income segregation, and how this

has been amplified by endogenous changes in regulation. For ease of exposition, I focus

my analysis on the three largest metropolitan areas in the US (New York, Los Angeles,

and Chicago), which collectively represent one eighth of the country’s population and

one fifth of the country’s GDP.

Since 1980, the college wage premium has increased by around 75%. I simulate this

increase in the model, keeping all other fundamentals fixed, and solve for the resulting

equilibria with and without the endogenous adjustment of regulation. This shock causes

a shift in average income in all neighbourhoods, and therefore sparks a feedback loop

between segregation and regulation. I show that the increased college wage premium

explains 40-86% of the observed increase in income segregation, depending on the city,

and that the endogenous adjustment of regulation accounts for 6-29% of this effect. At

the neighbourhood level, I confirm the key insight of my theory: endogenous regulation

makes neighbourhoods that experience income growth become even richer than they

otherwise would be.

Related literature: I contribute to two main strands of literature. The first strand

studies the determinants of spatial inequality in cities. Among these determinants are

geographical heterogeneity (Lee and Lin, 2018; Harari, 2024), urban infrastructure invest-

ments (Brinkman and Lin, 2022; Tsivanidis, 2023; Almagro et al., 2024; Bagagli, 2025), or

non-homothetic preferences over transport and land consumption (Glaeser et al., 2008). Of

particular relevance are the papers that study inequality as a self-reinforcing phenomenon.
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Couture and Handbury (2020), Hoelzlein (2023), and Almagro and Domínguez-Iino (2025)

focus on the endogenous adjustment of consumption opportunities (‘endogenous ameni-

ties’) as an amplification mechanism for income differences across neighbourhoods.

My contribution to this literature is to show that regulation can also act as such an

amplification mechanism.

Papers in this literature also study the link between income inequality and income

segregation. Fogli et al. (2025) and Couture et al. (2024) both highlight the importance

of differential price elasticities of demand for housing among rich and poor households.

In each of their models, there is a positive spillover from the rich (concerning human

capital accumulation in the case of Fogli et al. (2025), and a neighbourhood-based ‘love of

variety’ effect in Couture et al. (2024)). As income inequality increases, these amenities

intensify in certain neighbourhoods, which draws in housing demand. This raises prices,

and pushes poor households out of those neighbourhoods. This effect then raises the

intensity of the income-based spillovers, and the cycle repeats. Ultimately, segregation

is amplified by these feedback loops. I contribute to this work by showing that there is

another important mechanism, namely regulation, at play in the link between income

inequality and income segregation.

The second broad literature that I contribute to studies housing supply regulation.

The last twenty years have seen a great deal of research on this topic, so there are several

smaller strands that I contribute to.

One of these strands aims to quantify the effects of housing supply regulation. Glaeser

and Gyourko (2002), Ganong and Shoag (2017), and Hsieh and Moretti (2019) discuss how

regulation contributes to affordability crises and the misallocation of human capital across

cities. There has also been work on the effects of regulation within cities. Rossi-Hansberg

(2004) provided early theoretical work in this direction. However, most of the empirical

evidence has come more recently, and there is now a robust body of evidence that housing

supply regulation lowers density and increases prices at a very local level (Shanks, 2021;

Kulka et al., 2022; Hempel, 2023; Nagpal, 2023). Mei (2022) shows how minimum lot size

regulations are most hurtful for poorer households, but does not explicitly connect this

to spatial sorting. Kulka (2019), Song (2021), and Macek (2024) make this connection, and

indeed find that these regulations increase inequality across neighbourhoods. He (2024)

and Ma (2025) also find similar results with other types of zoning restrictions.

This literature shows how regulation affects the distribution of economic activity

across neighbourhoods. My first contribution is to model this alongside the opposite

causal direction; that is, the effect of neighbourhood outcomes on regulation. This allows
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me to quantify the amplification effects that come from regulation adjusting to sorting

changes. My second contribution is methodological. The above papers studying the

impact of regulation on sorting across neighbourhoods require confidential parcel-level

property records, often from data aggregators such as CoreLogic. My modelling approach

is instead able to answer questions about the effect of regulation on sorting with publicly

available data.

Another strand of the literature on housing supply regulation focuses on modelling

its formation. Fischel (2005), Glaeser et al. (2005), Hilber and Robert-Nicoud (2013),

and Ortalo-Magné and Prat (2014) propose theoretical frameworks for understanding

the causes of regulation. Two recent papers model endogenous regulation in a general

equilibrium setting at the city level. Duranton and Puga (2023) incorporate a model of

endogenous permitting costs into a system-of-cities model with human capital spillovers.

Their aim is to quantify the aggregate growth effects of loosening restrictions in produc-

tive cities. Parkhomenko (2023) models city-wide levels of regulation as arising from a

voting process, and studies its effects on the welfare of homeowners and renters. All

of these papers emphasise the origin of regulation in the fundamental tension between

incumbents (property owners) and newcomers to the area (whose interests are aligned

with those of property developers). Metropolitan areas with incumbents that are hurt

more by new construction endogenously choose to set higher levels of regulation. At a

conceptual level, I continue this approach to modelling housing supply regulation as a

conflict between two opposing groups. However, I build on these papers by modelling

how the demographics of an area lead to different incentives to regulate, and how this

ultimately causes spatial inequality.

This paper also differs from those above by studying the drivers of regulation within

metropolitan areas, rather than between them. There is a small empirical literature on

this topic. Brooks and Lutz (2019) provide evidence of endogenous regulation leading

to persistent effects of infrastructure shocks on built density. I provide a modelling

framework to quantify effects like these. Dobbels and Tavakalov (2023) use a minimum

lot size reform in Houston to document differential preferences for endogenous amenities,

and how this leads to different regulatory decisions at the neighbourhood level. My paper

captures this force in a tractable general equilibrium setting, and studies how it ends up

exacerbating spatial inequality. Favilukis and Song (2025) document empirical patterns

that suggest regulation is driven by municipalities making decisions that benefit their

own residents without internalising the externalities that this imposes on the rest of the

metropolitan area. At a conceptual level, the conflict between incumbents and outsiders

is also at the heart of my modelling framework. I take it further by linking this idea to
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income sorting and the reinforcement of inequality.

The rest of the paper is organised as follows. In section 2 I describe the model, and

highlight a simple version of it that provides intuition for the mechanism I am capturing.

Section 3 describes how I bring the model to the data. Section 4 presents the results from

counterfactual experiments that decompose observed income sorting increases since

1980.

2 Model

I build a quantitative model of a city in three blocks: i) municipalities that choose housing

supply regulation; ii) households with heterogeneous skill types and incomes that choose

where to live and where to work; and iii) firms that hire labour and produce a tradable

final good.

2.1 Housing Supply Regulation

There is a city with a finite set N of neighbourhoods, and in each neighbourhood there

is a sector of price-taking atomistic housing developers. They produce floorspace hn, and

sell it at price pn. There is a downward sloping demand curve for floorspace, detailed

later in section 2.3, but each developer is too small to internalise this. They produce at

marginal cost cn(hn). The marginal cost function is neighbourhood specific, reflecting

local factors like topography. It is also weakly increasing, reflecting the cost of building

at higher density. In low-density neighbourhoods, developers can fill out empty land

with single family homes, which is cheap to build. In dense areas, developers must start

building upwards rather than outwards, and this entails higher costs.
1

The city is partitioned into a setM of municipalities. Municipalitym contains the

set of neighbourhoodsNm ⊆ N . Municipalities’ only role is to issue permits for housing

floorspace. Without loss of generality, I use the same notation, hn, for floorspace permits

and realised floorspace. Municipalities never choose to issue permits that will not be

used.

Municipalities assess each marginal permit for a unit of floorspace individually. Each

permit affects two parties. The first is the developer who receives the permit, and

1
In section 3.3 I discuss the particular functional form cn that I propose and estimate, but this is not

central to the theoretical mechanism.
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is allowed to produce a marginal unit of floorspace as a result. It makes a profit of

pn − cn(hn). The second affected group is a mass of absentee landlords who own the

inframarginal floorspace, hn′ , in each neighbourhood n′
in the municipality. When a new

unit of floorspace is built in neighbourhood n, the price falls in neighbourhood n′
by

dpn′
dhn

as housing demand substitutes across neighbourhoods (this is described in section

2.2). The total loss to the owners of existing housing in the neighbourhood is therefore∑
n′∈Nm

dpn′
dhn

hn′ . The municipality trades off the profits of the marginal developer with

the losses of the inframarginal property owners. It issues permits until it is indifferent

between these two effects, subject to weights ξn:

0 = ξn (pn − cn(hn)) + (1− ξn)

( ∑
n′∈Nm

dpn′

dhn
hn′

)
(1)

I refer to the weights ξn as ‘developer power’, since they represent the influence that

developers in neighbourhood n have relative to property owners in the municipality’s

decision making. As ξn → 1, one can see that the municipality will build housing until

the price is equal to the marginal cost of building in that neighbourhood. If, instead,

ξn → 0, the municipality will never want to permit any new housing. This formulation

captures the fundamental conflict at the heart of housing supply regulation. Fischel (2005)

highlights the financial interests of property owners as the primary driver of restrictive

regulation in the US. The interests of housing developers are the counterweight that

prevent regulation from choking off all new construction (Ouasbaa et al., 2025).

In the tradition of Glaeser and Gyourko (2002), it will be helpful to interpret the

equilibrium markup of floorspace prices pn over marginal construction costs cn(hn) as a

sufficient statistic for the tightness of housing supply regulation. A high markup implies

the existence of a barrier to entry in the housing market. The work of D’Amico et al.,

2024 suggests housing developers are quite competitive. For instance, they document that

40% of employment in single family home construction in the US is in firms of fewer than

five employees. This implies that there are not large fixed costs associated with entering

this market. Given an absence of economic barriers to entry, a natural conclusion is that

markups reflect regulatory barriers to entry.

In light of this, I rearrange the municipality’s optimality condition (1) for neighbour-

hood n to yield a markup formula:

pn − cn(hn)

pn︸ ︷︷ ︸
Markup

=
1− ξn
ξn︸ ︷︷ ︸

Ability to regulate

·
∑
n′∈Nm

∣∣∣∣d ln pn′

d lnhn

∣∣∣∣ pn′hn′

pnhn︸ ︷︷ ︸
Incentive to regulate

(2)
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This formula states that the equilibrium tightness of housing supply regulation can be

written as the product of two terms. The first, labelled the ‘ability to regulate’, represents

the relative influence of incumbents over developers in the municipality’s decision-

making. I take it as a fixed institutional feature of the neighbourhood. The second term,

labelled the ‘incentive to regulate’, measures the size of the pecuniary externalities that

new construction imposes on property owners throughout municipalitym. It is a sum

of inverse cross-price demand elasticities, weighted by the value of the housing stock

in each neighbourhood. The larger are these elasticities, the more prices fall when new

housing is built, and therefore the larger is the incentive for municipalities to tighten

regulation in favour of property owners.

2.1.1 Discussion of Approaches to Representing Regulation

Although most other papers treat regulation as either non-existent or exogenous, there

have been nonetheless several approaches to representing it in a model. There are those

that focus on a specific aspect of regulation and represent it faithfully within their model.

The clearest examples of this are in the quantitative literature on minimum lot size

regulations (Kulka, 2019; Song, 2021; Macek, 2024), where these regulation are taken to

be (potentially flexible) constraints on the amount of housing that a given household can

consume. This type of approach has the advantage of being verifiably close to reality.

However, it typically also has very demanding data requirements, such as property-level

transaction databases provided by aggregators like CoreLogic, or digitised zoning maps

from individual municipalities.

My approach falls into the other broad category (e.g. Glaeser and Gyourko (2002),

Herkenhoff et al. (2018), Babalievsky et al. (2024), and Duranton and Puga (2023)) that aims

to capture the total effect of regulation in a low dimensional, theoretically motivated way.

In these models, regulation is typically a wedge between the equilibrium outcome and a

certain frictionless benchmark. In my case, this takes the form of the markup of floorspace

prices above marginal costs. If there were no motive for municipalities to regulate the

housing supply (ξn = 1 for all n), then prices would be equal to marginal costs. This has

the converse advantages and disadvantages. While it does lose immediate verifiability, it

does allow the researcher to study regulation with minimal data requirements. It also

plays the role of a ‘sufficient statistic’ for any number of specific types of regulation, as

long as they present a barrier to entry to developers.
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2.2 Housing Demand

There is a continuum L of households with measure L. Aside from the city, there is

also a fixed outside option, assumed to be the rest of the country. Households l are

differentiated by three characteristics: 1) a location-independent exogenous skill type

s(l) ∈ S ; 2) taste shocks for the city, yN (l), and the outside option, y∅(l); and 3) residence-

and workplace-specific taste shocks (znk(l))n,k∈N .

Households first choose whether to live in the city or to choose the outside option,

which gives them skill-specific utility V̄s. Households then choose a neighbourhood n to

live in, and a neighbourhood k to work in. In their residential neighbourhood, households

consume housing floorspace at price pn, as well as a tradable numeraire good. They

enjoy exogenous amenities bns specific to skill type s, as well as endogenous amenities

ηn which I proxy by the neighbourhood’s average income (Lee and Lin, 2018; Macek,

2024). They earn a wage wks in their workplace neighbourhood, and suffer a utility cost

as a function of commuting time τnk.

2.2.1 Housing and Tradable Good Consumption

I first analyse the problem of a household of skill type s which has already chosen

its residence neighbourhood n and workplace neighbourhood k. It earns a wage wks,

and uses this to buy housing floorspace at price pn
2
and a tradable good whose price

is normalised to one without loss of generality. Given housing consumption h and

tradable good consumption c, households maximise a non-homothetic CES consumption

aggregator defined implicitly as follows (see Comin et al. (2021) and section A.1 for more

details):

max
c,h

C(c, h)

s.t. C(c, h) =
(
c

σ−1
σ + C(c, h)

ν
σh

σ−1
σ

) σ
σ−1

c+ pnh = wks

(3)

Many quantitative urban models assume a Cobb-Douglas aggregator instead (Ahlfeldt

et al., 2015; Monte et al., 2018; Severen, 2018; Bordeu, 2023). This buys tractability, since

it means price elasticities of demand for a location are constant.
3
As stated in section

2
In a static model, there is no distinction between renting and buying housing. In both cases, households

are simply paying for housing consumption. The more important assumption is that households are not

being rebated the rents from owners of housing. If they were, it could potentially alter their location

decisions.

3
One may allow for different Cobb-Douglas shares among different skill groups, but this does not

allow for different elasticities for rich and poor households within the same group.
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1, it is crucial that my model match the empirical reality that rich households are less

price elastic than poor households. Non-homothetic CES preferences can achieve this.

Moreover, there is robust empirical evidence that housing demand is non-homothetic

(see, for example, Figure B.2). That is, rich households spend a smaller share of their

income on housing.

The parameter ν controls the shape of the Engel curve. If ν < 0, as will be calibrated

in the quantification of the model, then households with higher overall consumption will

place less importance on housing relative to tradable good consumption. Naturally, this

means they will spend a smaller share of their income on it. Given that richer households

are able to consume more in general, this implies that housing expenditure shares decline

in income.

As derived in section A.1, the household’s real wage (i.e. the value function of the

maximisation problem) is defined by

wks
P (pn, wks)

(4)

where

P (pn, wks) =

(
1 +

(
wks

P (pn, wks)

)ν
p1−σn

) 1
1−σ

(5)

is the non-homothetic CES price index in neighbourhood n and workplace k for skill

type s. Notice that, unlike a homothetic CES price index, it depends on the wage as well

as the price of housing. It is also defined implicitly.

2.3 Residence and Workplace Choice

Anticipating its optimal choice of housing and tradable good consumption, the indirect

utility from living in n and working in k for household l is the following:

vnk(l) = vnks(l) · znk(l) · yN (l)

where vnks(l) =
wks(l)

P (pn, wks(l))
· e−κτnk · ηψs(l)

n · bns(l)
(6)

Indirect utility is the product three main terms. The first is a common component, vnks(l),

which depends on the household’s skill type s(l). The second two are taste shocks for

the residence-workplace pair (n, k), znk(l), and the city, yN (l).

The common component of indirect utility, vnks(l), is itself the product of several

terms. The first term is the real wage, as defined in subsection 2.2.1. The second term

10



is a utility shifter which exponentially decays with the commuting time τnk between n

and k. The speed of this decay is controlled by parameter κ. The final two terms, ηn

and bn∫(l), are the endogenous and exogenous amenities respectively. The strength of

the endogenous amenity spillovers is skill-type specific, to accommodate the common

result that college educated and richer households often are estimated to have higher

preference for endogenous amenities than non-college educated and poorer households

(Diamond, 2016; Macek, 2024). Conditional on living in the city, household l’s location

choice problem is therefore

max
n,k∈N

vnks(l) · znk(l) (7)

If the residence and workplace taste shocks znk are distributed independently among

households according to the following Fréchet distribution

P(znk(l) ≤ z) = e−z
−γ

γ > 0 (8)

then the demand among skill type s for living in n and working in k is

ℓnks =
vγnks
V γ
s

· Ls (9)

where Ls is the number of households of skill type s that choose to live in the city, and

Vs is the average indirect utility among those households. From the properties of the

Fréchet distribution, it takes the following expression:

Vs =

( ∑
n,k∈N

vγnks

) 1
γ

(10)

This permits writing the endogenous amenities explicitly as

ηn =

∑
k∈N ,s∈S ℓnks · wks∑

k∈N ,s∈S ℓnks
(11)

Notice that equations (6), (9) and (11) define a fixed point system. Households’ location

decisions depend on the average income in each neighbourhood, and the average income

in each neighbourhood in turn depends on households’ location decisions. This will be

relevant in the discussion of inverting and solving the model numerically.

Equation (9) also allows one to obtain other important expressions. Summing across

residence locations yields the labour supply to each workplace location:

ℓks =

∑
n∈N vγnks
V γ
s

· Ls (12)

11



Equation (9) can instead be combined with the expression for non-homothetic CES

housing demand, derived in section A.1, to get the total housing demand in neighbourhood

n:

hn =
∑

k∈N ,s∈S

(
pn

P (wks, pn)

)−σ (
wks

P (wks, pn)

)1+ν

ℓnks (13)

2.3.1 Discussion of the Price Elasticity of Housing Demand

As shown in equation (2), the elasticities of housing demand are key for determining

regulation in equilibrium. There are two key features of this model of household behaviour

which lead to rich households having lower demand elasticities. The first is the non-

homotheticity of preferences over housing and tradable goods. While this does not always

map into lower elasticities of demand for the rich, in this particular formulation it does.

Crucially, with the parameters I use for the non-homothetic CES aggregator (discussed

in section 3.3.1), the price index P has the following property:

Lemma 1. If ν < 0 and σ ∈ (0, 1),

∂2 lnP

∂ ln p∂ lnw
< 0 (14)

Proof: See appendix A.2.

That is, price increases reduce the indirect utility of rich households proportionally

less than that of poor households. Therefore, prices are less important for their location

choices, and they are less price elastic as a result.

The second feature of the model which leads to differential price elasticities is the skill-

specificity of the endogenous amenity spillovers. In the baseline calibration (discussed

again in section 3.3.1), high-skill households value the presence of the rich more than

low-skill households do. For a given price rise in a neighbourhood, this means that

high-skill households will be ‘compensated’ by the resulting exit of poor households

more than low-skill households. This provides an additional reason for price increases to

be less important to them, and therefore for their housing demand elasticities to be lower.

This second point is particularly important because it highlights that my model

captures a common ‘alternative’ rationale for regulation that is proposed in the literature;

namely that its purpose is directly to keep out households of a particular socioeconomic or

demographic group. In my model, these effects are present, but they all operate through

the elasticities of demand for housing.
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2.4 City Choice

The first choice that households have to make is whether to live in the city, or to choose a

fixed outside option. One should think of this as the rest of the country in which the city

is embedded, and that it is large enough not to be affected by population flows in and out

of the city. This outside option gives utility V̄s to households of skill type s. Households

have a taste shock for the city yN , and one for the outside option y∅. Given that they

do not yet know the realisation of znk, they choose based on their expected utility from

living in the city. Therefore, their problem is

max
{
Vs(l) · yN (l), V̄s(l) · y∅(l)

}
(15)

If these taste shocks are independently Fréchet distributed with shape parameter ζ , then

demand for living in the city takes the following form:

Ls =
V ζ
s

V ζ
s + V̄ ζ

s

· L̄s (16)

where L̄s is the exogenous mass of households of skill type s that live in the country.

2.5 Labour Demand

In each neighbourhood k there is a price-taking representative firm that hires labour of

different skill types and produces the tradable good. It uses the following technology,

which has a constant elasticity of substitution across skill types:

qk =

(∑
s∈S

a
1
ρ

ksℓ
ρ−1
ρ

ks

) ρ
ρ−1

·δ

(17)

The parameter δ controls the returns to scale in the production function. It can be thought

of as playing the role of a fixed factor in production, such as land, which is not explicitly

modelled here. Each firm takes wages for each skill type as given, and therefore inverse

labour demand for type s is given by:

wks = δ · a
1
ρ

ks · q
ρ(δ−1)+1

δρ

k · ℓ
− 1

ρ

ks (18)
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2.6 Equilibrium

Definition 1 (Equilibrium). An equilibrium is a tuple (w,p,η,h, ℓ) such that for all

n, k ∈ N and s ∈ S such that local price indices are defined by (A.16); location choices

are defined by (6), (9), (11), (10), and (16); housing demand defined by (13) is equal to

the housing supply defined implicitly by each municipality’s optimality conditions (1);

labour demand, given by (17) and (18), is equal to labour supply (12).

One should think of this model as qualitatively being a series of housing markets and

labour markets. These markets are cleared by arrays of floorspace prices p and skill type

specific wages w, and are connected by commuting flows. The key equations for the

housing market are (13) and (1), while the key equations for the labour market are (18)

and (12).

2.7 A Simple Example of the Key Mechanism

In this section, I outline a simple version of the model which allows for a clean exposition

the interaction between income segregation and endogenous regulation. This example is

also directly analogous to how I later quantify the effects of endogenous regulation in

my counterfactual results.

Equation (2) decomposes markups into an institutional and economic term. Consider

the special case where ξn = 1
2
for some neighbourhood n; that is, property owners and

housing developers have equal political power. Moreover, suppose that municipalitym

consists of only neighbourhood n, and that the city is large enough so that n is negligible

in size relative to it. This permits analysis of n in partial equilibrium, since outcomes in

the rest of the city can be taken as given.

Dropping subscripts for simplicity, in this case equation (2) collapses to a familiar

markup formula for an oligopolist:

p− c̄

p
=

1∣∣∣d lnhd ln p

∣∣∣ (19)

That is, the markup of price above the marginal construction cost is equal to the inverse

of the demand elasticity for housing. The municipality behaves as if it were an oligopolist

maximising total profits from housing production. Crucially, in neighbourhoods with

inelastic demand, it will ‘exploit’ that demand with a high markup.
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To understand how the municipality will adjust regulation in response to the income

composition of the neighbourhood, one must specify the demand side of the housing

market. For simplicity’s sake, I assume that each household consumes one unit of

housing,
4
and households have the following skill-specific housing demand curves:

hL(p) = p−εL hH(p, w) = w · p−εH (20)

εH < εL w > 1 (21)

The shifter w represents the high-skill wage; low-skill wages are implicitly normalised

to one. Crucially, high-skill households are less price elastic than low-skill households.

Conditional on the share of high-skill households in the neighbourhood, which I denote

with π, the local elasticity of housing demand is the following:∣∣∣∣d lnhd ln p

∣∣∣∣ = π · εH + (1− π) · εL (22)

It is a convex combination of the high-skill and low-skill elasticities of demand, weighted

by the high-skill share π. In the full quantitative version of the model, this elasticity is far

more complicated. It involves spatial interactions, and the elasticities of different groups

are not constant, but nonetheless the key logic remains: richer neighbourhoods are less

price elastic, all else equal.

Denoting the markup as µ ≡ p−c̄
p
, the housing market equilibrium can be defined by

the following two equations in π and µ:

Household behaviour: π = fπ(µ,w) ≡
hH

(
c̄

1−µ , w
)

hL

(
c̄

1−µ

)
+ hH

(
c̄

1−µ , w
) (23)

Municipality behaviour: µ = fµ(π) ≡
1

π · εH + (1− π) · εL
(24)

The first equation defines the how the income composition of the neighbourhood responds

to the tightness of regulation (namely, the markup). The second equation, in turn,

describes how themunicipality chooses regulation (the markup) in response to the income

composition of the neighbourhood. This system therefore summarises the feedback loop

between neighbourhood income and housing supply regulation. High markups push out

poor households and make the neighbourhood richer (equation 23), and municipalities

choose tighter regulations for richer neighbourhoods (equation 24).

This feedback loop can be illustrated in a graphical example. Suppose that the

4
This is not necessary for the mechanism, but it makes analysis of the simple case cleaner.
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Figure 1: How regulation adjusts after an increase in the college wage premium

high-skill income is initially equal to some w > 1. Figure 1 represents this initial

equilibrium with the intersection of the green line, which represents the households’

response to the municipality’s markup (equation 23), and the black line, which represents

the municipality’s response to the households’ location choices (equation 24). The

intersection of these lines defines the initial equilibrium markup, µ1, and high-skill share,

π1.

Suppose that the college wage premium increases; that is, the wage of high-skill

households increases from w to w′
. Figure 1 shows that this has the effect of raising the

high-skill share for any given markup; the green line becomes the red line. The result

of this can be decomposed into two effects. The first, which I call the ‘direct effect’, is

what happens if the municipality does not adjust regulation in response to the changing

income distribution of the neighbourhood. In this simple case, that means it behaves as if

the high-skill share stays fixed at π1. As such, it keeps its markup constant at µ1 = fµ(π1),

and the high-skill share rises to π2.

What happens if the municipality then starts responding optimally to the local income

distribution? Given the high-skill share of π2, the municipality’s optimal choice is to

charge a higher markup. Households re-sort in response to this higher markup, and

the high-skill share increases further. This cycle continues, represented by the zig-zag

pattern in the arrow in Figure 1, until households’ and municipalities’ choices are both

consistent with one another. The high-skill share ends up even higher than before, at π3.
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I call this feedback loop the ‘amplification effect’.

3 Quantification

In this section I outline how I bring the model to real world data. There are two main

types of unobserved quantities that are needed to conduct counterfactual solutions. The

first are the location fundamentals,

(
ξ,a, b, V̄

)
. These are location-specific terms, and

are usually exactly identified from the data. Hence, the process of recovering them is often

referred to as ‘inversion’. The second group are the parameters, (σ, ν, γ, ζ, ψL, ψH , ρ, δ).

These do not depend on location. Instead, they reflect general properties of preferences

and technology.

In section 3.1, I describe the data sources that I use. In section 3.2, I detail the process

for inverting the observed equilibrium to recover the location fundamentals, conditional

on the set of parameters. In section 3.3, I then describe how I calibrate and estimate these

parameters. Finally, in 3.4 I show how the model is able to match key first-order facts

from the data.

3.1 Data

3.1.1 RSMeans Construction Cost Books

A key part of my analysis relies on measuring the markup of housing prices above

marginal construction costs. Data on housing prices is relatively common; data on

construction costs is not. I use a pair of books on construction costs published by

RSMeans in 2017,
5
a large American industrial data aggregator. These books are freely

available in many US public libraries. In large part I follow the approach of Glaeser and

Gyourko (2002), who construct markups from this dataset at the metropolitan area level.

My key departure from their work is that I construct markups instead at the census tract

level, using RSMeans’ breakdowns of construction costs by structure type, and another

dataset on the mix of structure types in each census tract.

I start by digitising two groups of tables from these books using GPT-4.1’s image

recognition API. The first group of tables details the average marginal cost of building

a square foot of housing with different characteristics. The most important of these

5
In fact, one of the books was only available from 2019. I deflate all estimates from this book by a

nationwide construction cost index.
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characteristics for the purposes of this paper is the type of structure that a housing unit

belongs to. The tables provide average construction costs for four basic types: single

family homes; one to three storey apartment buildings; four to seven storey apartment

buildings; and eight to twenty-four storey apartment buildings. As mentioned, the

ultimate aim with this data is to combine these construction costs with other data on

the observed mix of structure types in each census tract (described below). In order to

make these two datasets compatible, I collapse the two largest categories in the RSMeans

data into ‘large apartment buildings’, and refer to the second category as ‘medium

size apartment buildings’. The tables also provide cost breakdowns by other building

characteristics, such as overall quality and building materials. Following Glaeser and

Gyourko (2002), I use only cost estimates for ‘economy’ housing units (the lowest quality

type), and average across other characteristics.

The second group of tables provides location-specific adjustment factors to take into

account differences in terrain suitability and local labour costs. These ‘locations’ are

groups of three-digit zip codes, covering all major urban areas. In total, there are 862

locations in the table. I multiply the marginal construction costs from the first table by

these adjustment factors. The next step is to allocate these location and structure type

specific marginal costs to census tracts, for which I use the American Community Survey.

3.1.2 American Community Survey

I use the American Community Survey (ACS) tabulated at the census tract level (accessed

from NHGIS). Census tracts are drawn to contain roughly 4,000 people each, and I

follow other papers in this literature by treating them as the empirical equivalent of the

‘neighbourhood’ in my model (Almagro et al., 2024; Couture et al., 2024; Owens III et al.,

2020). There are roughly 75,000 census tracts in the United States, and after dropping

missing observations I am left with a working sample of 56,294 census tracts covering 851

metropolitan and micropolitan areas.
6
I treat these metropolitan and micropolitan areas

as the equivalent of a ‘city’ in my model, since they are large enough to be considered a

self-contained labour market. Most of my analysis is conducted using the 2015-2019 ACS

sample, which I will refer to for convenience’s sake as 2017 (the central year). I choose

this sample because it is the last ACS sample to be entirely unaffected by the Covid-19

pandemic and its associated changes to location choices.

To map the RSMeans construction cost estimates to census tracts, I require data on

the mix of structure types in each tract. While the ACS does have this data, it does not

6
Officially known as Core Based Statistical Areas.
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always define structure types in the same way as RSMeans. For single family homes this

is not the case; they both define them the same way. However, for apartment buildings

RSMeans divides structure types by their number of storeys, whereas the ACS divides

structure types by the number of housing units in each structure. Therefore I need to

take a stance on how to define the boundary between ‘medium size apartment buildings’

(one to three storeys) and ‘large apartment buildings’ (over four storeys) using the ACS

data. Luckily, RSMeans provides plausible ranges of the total floorspace in each structure

type, which gives a rough estimate of the expected number of housing units. Using this,

I assign apartment buildings in the ACS with over fifty housing units to be ‘large’, and all

other apartment buildings to be ‘medium size’.

While I believe this is a good approximation, I also do not consider it to be a major

concern. The primary determinant of a structure type’s construction cost per square

foot is whether it is a single family home or not. Apartment buildings are simply much

more expensive to build, regardless of whether they are large or small. Therefore, the

most important dimension of cost variation is whether developers are building single

family homes or not, which is precisely measured in the ACS. Moreover, large apartment

buildings are simply very rare in the urban US.

Armed with data on construction costs by structure type, and structure type shares by

census tract, I describe in section 3.2.4 how I estimate the overall marginal construction

cost in each neighbourhood. To compute markups, I also need data on housing prices

per square foot in each census tract. Given that square feet of housing are not reported

in the census, I follow a very similar procedure to Hoelzlein (2023): I multiply median

housing expenditures by the number of housing units in the neighbourhood, and divide

by the total number of rooms. This gives a measure of housing expenditure per room.

The remaining step is then to rescale this to be housing expenditure per square foot. I

do this by computing the median model-implied housing demand among all households,

and dividing this by the US-wide median size of a housing unit, measured in square

feet, from the American Housing Survey.
7
I then divide prices by this ratio to obtain the

model-implied price per square foot.

3.1.3 Other Data Sources

I augment the ACS with data from the LEHD Origin-Destination Employment Statistics

to obtain residence- and workplace-specific census tract employment numbers for college

and non-college educated workers in 2017. I treat these classes of workers as the empirical

7
In future work, I plan to use MSA-specific medians from the American Housing Survey.
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equivalents of the skill types in the model, in line with other work (Diamond, 2016;

Giannone, 2022; Hoelzlein, 2023). I also use the Urban Institute’s bilateral driving time

matrices at the census tract level. These two datasets, along with the ACS variables,

allow me to recover unobserved quantities (developer power, wages, amenities, and

productivities) from the observed equilibrium. I outline this process in section 3.2.

Finally, for the sake of validating my model-implied measures of regulation, I use the

2018 update of the Wharton Residential Land Use Regulation Index (Gyourko et al., 2008;

Gyourko et al., 2021). This is a survey-based index measuring the tightness of housing

supply regulation in around 2,500 zoning jurisdictions in the US, focusing on the suburbs

of large metropolitan areas. Since it does not cover entire cities, nor does it measure

regulatory tightness for different census tracts within municipalities, it cannot be used as

a data input to the model. Nonetheless, it can be used as a validation of my model-implied

measures of regulation.

3.2 Model Inversion

For now I treat the location-independent parameters in the model as known. In section

3.3, I detail how I calibrate and estimate them. In this section, I outline the procedure

for inverting the model’s location fundamentals. In this case, they are: amenities {bns};
productivities {aks}; indirect utilities of the outside option {V̄s}; and developer power

{ξn}. There will also be fundamentals derived from the form I choose for the marginal

construction cost functions, {cn}, that I introduce below.

3.2.1 Wages

Inverting the model requires data on equilibrium outcomes. In this case, skill-specific

wages by workplace neighbourhood are unobserved, and I have to recover them from

data on other equilibrium outcomes. This is a common procedure in quantitative urban

models (see e.g. Ahlfeldt et al. (2015) and Tsivanidis (2023)), since data on wages at this

level typically do not exist. Following Ahlfeldt et al. (2015), I rewrite the labour supply

equation (12) so that it conditions on the number of households by residential location

and skill type.

ℓks =
∑
n∈N

(
wks

P (wks,pn)
e−κτnk

)γ
∑

k′∈N

(
wk′s

P (wk′s,pn)
e−κτnk′

)γ · ℓns (25)
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Given data on households by residential location {ℓns}, households by workplace location
{ℓks}, and commuting times {τnk}, this equation can be solved via a standard tâtonnement

procedure. An important difference with Ahlfeldt et al. (2015) is that here, due to the

non-homotheticity, floorspace prices do not cancel out of the equation. This may seem

innocuous, but it strengthens the requirements for knowledge of parameters before

passing this step of the inversion process. In the homothetic case, one only needs to know

the product γ ·κ in order to back out a transformation of the wage,wγks. This is particularly

convenient because this product is readily estimatable in a standard ‘commuting gravity’

regression using publicly available travel survey data. In contrast, with non-homotheticity

one needs to take a stance on the ‘untransformed’ wage in each step of the iteration in

order to be able to compute the price index P (wks, pn). As such, the econometrician must

take a stance on both γ and κ.

3.2.2 Amenities and Productivities

Given wages {wks}, the next step is to recover exogenous amenities {bns} and productiv-
ities {aks}. To recover amenities, one can sum equation (9) across workplaces to obtain

an expression for the total number of workers of each skill type living in neighbourhood

n. Given that amenities are only identified up to a multiplicative constant, I normalise

the amenities in some neighbourhood 0 ∈ N to one for both skill types. As a result,

amenities can be written in closed form as

bns =

(
ℓns
ℓ0s

) 1
γ


[∑

k∈N

(
wks

P (pn,wks)
· e−κτnk

)γ]
· ηψsγ

n[∑
k∈N

(
wks

P (p0,wks)
· e−κτ0k

)γ]
· ηψsγ

0

− 1
γ

(26)

The intuition for this equation comes from the idea of spatial equilibrium. Neighbour-

hoods with many households despite poor observed characteristics (low wages, high

prices, and low endogenous amenities) must have high exogenous amenities. If not, those

neighbourhoods would not be able to attract so many households.

Note from equation (13) that the quantity of housing hn in neighbourhood n depends

on the price of housing pn, wage {wks}, and households’ commuting choices {ℓnks}. In
turn, commuting choices in equation (9) depend on wages, prices, endogenous amenities

ηn, exogenous amenities {bns}, and the mass of workers of each skill type living in the

city, {Ls}. Recovering exogenous amenities therefore allows me to compute the model-

implied quantity of housing in each neighbourhood. This will be useful in recovering

developer power from the data, as described in section 3.2.5.
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Unlike exogenous amenities, it is not possible to invert the productivity terms in

closed form, but the procedure for solving for them is nonetheless computationally

straightforward. Writing equations (17) and (18) together, we have the inverse labour

demand curve for each skill type as a function of the productivity terms.

wks = δ · a
1
ρ

ks ·

(∑
s∈S

a
1
ρ

ksℓ
ρ−1
ρ

ks

) ρ(δ−1)+1
ρ−1

· ℓ
− 1

ρ

ks (27)

Given knowledge of wages {wks} and labour supply {ℓks}, this can be solved for via a

tâtonnement procedure. Since it does not involve cross-neighbourhood interactions, it is

very fast to solve.

3.2.3 Utility of the Outside Option

Once wages {wks} and amenities {bns} have been solved for, from equation (15) I am

able to compute the average indirect utility of households who live in the city, {Vs}. As a
result, this allows me to invert the implied indirect utility of the outside option for each

skill type.

V̄s = Vs

(
L̄s − Ls
Ls

) 1
ζ

(28)

Given that I am framing the outside option as the rest of the country, I take L̄s to be the

total number of households (workers) of type s in the country from the LODES data.

3.2.4 Housing Cost Fundamentals

I have so far left the other key production technology in the model, the marginal con-

struction cost function cn(hn), unspecified. I do this because none of the model depends

substantively on the functional form of cn. However, to conduct counterfactual exercises

one must take a stance on it. Here, I outline a simple microfoundation whose funda-

mentals I can recover from the publicly available data I use. The aim is to capture the

congestion forces that arise as a neighbourhood becomes denser while retaining minimal

data requirements.

I assume that all floorspace has to be built as part of a structure, and there are three

structure types. Let I = {single family,medium size multifamily, large multifamily} be

the set of these structure types. There is a constant, neighbourhood-specific marginal

cost of building a unit of floorspace for each structure type. I denote this marginal cost
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ℵni for structure type i in neighbourhood n.

For each amount of built floorspace hn, there is a neighbourhood-specific exogenous

share ϕni(hn) that must be devoted to each structure type i. This captures the scarcity

of land: on empty land, it is easy to build only single family housing. As the land fills

up, developers must start building denser forms of housing. The total cost function for

neighbourhood n, which I denote by gn, is therefore

gn(hn) = hn ·
∑
i∈I

ϕni(hn) · ℵni (29)

Furthermore, I assume that the structure type shares ϕni take the following logistic form:

ϕni(hn) =
ℶni ·

(
hn
λn

)ℸi

∑
j ℶnj ·

(
hn
λn

)ℸj
(30)

I denote the total land area of neighbourhood n as λn, and therefore ratio
hn
λn

as hous-

ing density. The neighbourhood-specific shifters ℶni capture idiosyncratic variation in

structure type shares that is unrelated to this housing density. For instance, for historical

reasons older neighbourhoods may have a larger share of multifamily structures than

similarly dense newly built neighbourhoods.

The elasticities ℸi control the speed with which structure type i increases or decreases
its share as the neighbourhood gets denser. These parameters are key for counterfactual

experiments in which the analyst needs to know how marginal construction costs will

respond to changes in the quantity of housing. Differentiatingwith respect to hn, marginal

construction costs are given by

cn(hn) =
∑
i∈I

ℵniϕni(hn)

(
1 + ℸi −

∑
j∈I

ϕnj(hn)ℸj

)
(31)

Since this is a novel formulation of the construction cost function, I estimate its parameters

{ℸi} myself. I describe this procedure in section 3.3.2. Here I take those parameters as

given, and outline the procedure for recovering the location fundamentals {ℵni} and

{ℶni}.

The first step is to note that the structure-type shares {ϕni(hn)} are unique in {ℸi} up
to an additive constant. Therefore, one can additively normaliseℸsingle family, the parameter

that determines the share of single family housing as a function of housing density, to

zero. The remaining parameters, ℸmedium size multifamily and ℸlarge multifamily, can subsequently
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be interpreted as being relative to ℸsingle family. Similarly, the structure-type shifters {ℶni}
can be normalised multiplicatively so that ℶn,single family = 1 for all neighbourhoods n. As

a result, one can recover the shifters from the following equation:

ℶni =
ϕni
ϕn1

(
hn
λn

)−ℸi

(32)

3.2.5 Developer Power

The final and most difficult step of inverting my model from an observed equilibrium is

the recovery of developer power {ξn}. From equation (1) this can be written as

ξn =

∑
n′∈Nm

dpn′
dhn

hn′∑
n′∈Nm

dpn′
dhn

hn′ − (pn − cn(hn))
(33)

Prices pn are observed, and both quantities of housing hn and marginal costs cn(hn) are

easily computable from the data and previously inverted fundamentals. The only part

that is not readily computable is the inverse cross-price derivative of the housing demand

function,
dpn′
dhn

.

There are several reasons why this is not straightforward to compute. The first is

that the inverse housing demand function is not expressible in closed form. In fact,

neither is the housing demand function itself (equation 13) due to the presence of the

non-homothetic CES price index, but this is fast to compute via fixed point iteration or

linear interpolation. Therefore, no matter the method for computing derivatives, one

must compute the Jacobian of housing demand and then invert it. The elements of the

resulting matrix will be the desired inverse cross-price derivatives.

I solve for the Jacobian matrix in the following way.
8
First, I write its terms as a

function of other model quantities. Given the multiplicative structure of the model, it is

convenient to write out the cross-price elasticities, rather than cross-price derivatives:

d lnhn
d ln pj

=
∑
ks

hnks
hn

[
1{n = j}

(
−σ
(
1− d lnP (wks, pn)

d ln pn

)
−(ν + 1)

d lnP (wks, pn)

d ln pn

)
+
d ln ℓnks
d ln pj

] (34)

This in turn contains two different groups of elasticities. The first, {d lnP (wks,pn)
d ln pn

}, is easily

8
The simplest approach would be to use a finite differences approximation. In appendix B.4 I describe

why this is infeasible in my setting.
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computed via finite difference methods because it does not involve cross-neighbourhood

interactions. It requires evaluating P for every (n, k, s) combination twice, which can be

done quickly.

The difficulty lies with the second group of elasticities, {d ln ℓnks

d ln pj
}. These are the

elasticities of demand for a residence-workplace pair (n, k) among skill type s with

respect to the price in neighbourhood j. Unlike the first group, it is infeasible to compute

them via finite differences for the same reasons discussed in B.4. As such, I differentiate

(9) and (11) to write them as a function of other elasticities:

d ln ℓnks
d ln pj

= γ

[
1{n = j}

(
−d lnP (wks, pj)

d ln pj

)
−
∑
k′

ℓjk′s
Ls

(
−d lnP (wk

′s, pj)

d ln pj

)]

+ γ

[
ψs
d ln ηn
d ln pj

−
∑
n′

ℓn′s

Ls
ψs
d ln ηn′

d ln pj

] (35)

d ln ηn
d ln pj

=
∑
ks

wks − ηn
ηn

ℓnks
ℓn

d ln ℓnks
d ln pj

(36)

This defines a fixed point system of equations in {d ln ℓnks

d ln pj
} and {d ln ηn

d ln pj
} (assuming that

{d lnP (wks,pn)
d ln pn

} has already been computed). The reason that it must be written as a fixed

point system, and not in closed form, is the presence of endogenous amenities. The

average income in each neighbourhood is the result of households’ location choices,

and those choices are in turn determined by the average income in each neighbourhood.

Therefore, any change in prices will change location choices. These location choices

will change endogenous amenities, which in turn affect location choices again. The true

elasticities must satisfy this internal consistency.

This system can be solved via fixed point iteration. However, this approach is prac-

tically difficult because of the size of the arrays. The total number of equations in this

system is |N |3 · |S| + |N |2. In New York, for instance, this system has more than 128

billion equations. The process of solving these equations iteratively involves updating

arrays of this size in memory, which takes up a significant amount of time.
9
As a result,

solving the full system takes several hours for large metropolitan areas. This is not an

issue if it only needs to be done once, as is the case when recovering {ξn}. However,
when solving for counterfactual scenarios, this system needs to be solved many times to

evaluate convergence criteria (described in section 4.1). It is therefore of great practical

value to speed this computation up.

To this end, I take advantage of a simplification of the system that arises from the

9
Even when using pre-allocated arrays.
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gravity structure of commuting demand. This can be expressed in the following way:

d ln ℓnks
d ln pj

=
d ln ℓnk′s
d ln pj

∀k, k′ ∈ N if n ̸= j (37)

That is, a large number of the elements of this array are duplicates. Conditional on

the residence neighbourhood n, perturbing prices in some other neighbourhood j has

the same proportional response on commuting demand to all destinations k. Paring

down the arrays to include only unique elements reduces the size to scale with O (|N |2),
which removes memory allocation as the main bottleneck. The system is much more

manageable as a result, it is possible to solve this system in under two minutes for any

metropolitan area. Once the system is solved, it is straightforward to compute the full

matrix of cross-price elasticities in equation (34), invert it, and obtain {ξn} from equation

(33).

3.3 Parameters

The model contains a number of location-independent parameters, and knowledge of

these is necessary for counterfactual solutions of the model. In this section I outline how

I calibrate and estimate these parameters. See table B.1 for a summary of the parameters

used.

3.3.1 Household Utility Parameters

The parameters of each household’s utility function are crucial in my quantitative exercise

because they control the shape of the housing demand curve in each neighbourhood, as

well as how the slope of this demand curve changes with the neighbourhood’s income

composition.

Two of these parameters are σ and ν, which come from the non-homothetic CES

consumption aggregator between housing and tradable goods. In particular, σ is the

elasticity of substitution across these two goods, and ν controls the slope of the Engel

curve of housing expenditure. The latter is of fundamental importance for the predictions

of my model. A negative value of ν implies that housing expenditure shares are declining

in income, i.e. that housing demand is non-homothetic. There is substantial existing

evidence for the non-homotheticity of housing demand (Finlay andWilliams, 2022; Macek,

2024). I additionally provide evidence for this in Figure B.2. I use the ACS microdata

sample from 2017 to plot household income against the ratio of home value to household
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income. As the figure shows, richer households own homes that are less valuable as a

fraction of their income, indicating a lower overall expenditure burden.

In light of this, I take the parameters governing the non-homothetic CES aggregator

from Finlay and Williams (2022), who estimate them from the US Panel Survey of Income

Dynamics. They estimate σ = 0.5, implying that tradable goods consumption and housing

are complementary. More importantly, they estimate ν = −0.3. This is consistent with

the reduced form pattern of housing expenditure shares declining in income.

Another important pair of parameters in the households’ utility function are the

endogenous amenity spillover elasticities, ψL and ψH . These determine the strength of

low- and high-skill households’ preferences for living in richer neighbourhoods. To the

best of my knowledge, the only applicable estimates in the literature are those of Macek

(2024). He estimates these elasticities for low-, medium-, and high-income groups in the

US using a ‘spatial BLP instrument’ strategy (see also Almagro et al. (2024)), leveraging

the placement of natural amenities to generate substitution across neighbourhoods

and exogenously shift average incomes. Given that income and skill are very highly

correlated, I take ψL to be the low-income estimate, and ψH to be the high-income

estimate. Concretely, I take ψL = 0.1 and ψH = 0.3. This is consistent with findings in

other papers (Diamond, 2016; Couture and Handbury, 2020) that high-skill households

derive more utility from living in affluent neighbourhoods than do low-skill households.

The parameter κ governs the utility costs of commuting. I take κ = 0.01 from Ahlfeldt

et al. (2015). This implies that households’ indirect utility declines by roughly one percent

for every additional minute spent travelling to work.

Finally, the Fréchet shape parameters γ and ζ govern the dispersion of the taste

shock distributions across different choice nests: the choice between neighbourhoods

within the city, and the choice between the city and the outside option. Higher values

of these parameters reduce the taste shocks’ dispersion, thereby increasing the relative

importance of the common component of indirect utility (vnks and Vs for the inner and

upper nests respectively) for determining location choices. As such, these parameters

are often loosely referred to as ‘migration elasticities’, in that they affect the elasticity of

population in a location to the indirect utility of living in that location.
10

10
Note that these parameters are not mathematically equivalent to the stated elasticity unless there

is an uncountable number of locations. This is due to the adjustment that comes from the ‘multilateral

resistance’ term in the denominator of choice probability expressions. For instance, in the case of equation

(16), the true ‘migration elasticity’ would be:

d lnLs

d lnVs
= ζ ·

(
1− Ls

L̄s

)
(38)
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The migration elasticity across residential and workplace locations, γ, has been

estimated in several different papers. Estimates vary substantially depending on the

setting and the estimation method. The lowest estimates are around two to three, from

papers like Monte et al. (2018), Severen (2018), and Tsivanidis (2023), and the highest

estimates range from five to seven, from papers like Heblich et al. (2020) and Ahlfeldt

et al. (2015). In the absence of a good criterion to choose between these, I take a midpoint

of γ = 4. For the migration elasticity across larger locational units, I follow Desmet

et al. (2018) and set ζ = 2. Intuitively, this means that households are more willing to

substitute across residential and workplace neighbourhoods than they are between living

in the city and living elsewhere.

3.3.2 Production Parameters

The technology for production of the tradable good in each neighbourhood is governed

by two parameters: ρ, the elasticity of substitution between low- and high-skill workers,

and δ, the labour share in production. I choose ρ = 1.66, following Diamond (2016)

who estimates this using the interaction of Bartik labour demand shocks and housing

supply constraints. For the labour share in production, I take δ = 0.9 from Desmet and

Rappaport (2017).

The other remaining production parameters are those that that govern the marginal

construction cost curves {cn}. These parameters are the elasticities {ℸi}, which control

how the shares of different structure types move with housing density. To estimate these,

I rewrite equation (32) into a regression equation:

ln
ϕni

ϕn,single family

= ln ℶ̄i + ℸi · ln
hn
λn

+ ln ℶ̃ni (39)

where the structure-type shifters have been decomposed without loss of generality into

a (geometric) mean component ℶ̄i and a residual term, ℶ̃ni. To estimate this equation,

I start with ACS data on the number of housing units by structure type. Note that

{ϕni} are shares of floorspace, not shares of housing units. If housing units in different

structure types differ in their average floorspace, there will be measurement error in the

dependent variable of equation (39). Unfortunately, the ACS does not collect information

on housing units’ floorspace, so in the absence of a better measure I use this. If the

size of the measurement error is uncorrelated with density, then the measurement error

is classical and OLS is still able to estimate the coefficient consistently. This would be

rather than simply ζ .
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violated, for instance, if houses were systematically smaller relative to apartments in

denser neighbourhoods. It is not obvious that this should be the case.

To estimate this equation, I use data from the ACS on structure type shares by census

tract throughout the US, as well as data on land areas λn and model implied housing

quantities hn. Pooling data on structure-type shares from the ACS and housing density

frommultiple metropolitan areas, this equation can be estimated with OLS if the regressor,

ln hn
λn

is uncorrelated with the error term, ln ℶ̃ni. Intuitively, this condition means that

unobserved shifters of the relative shares of medium and large apartment buildings

relative to single family homes must be uncorrelated with density.

Table 1 shows the results of this regression. Given that there are some neighbourhoods

without any apartment buildings, I take the inverse hyperbolic sine of the dependent

variables rather than the natural logarithm. The results confirm the intuition that as a

neighbourhood becomes denser, it must start building apartment buildings instead of

single family homes.

Table 1: Elasticities of relative structure type shares to housing density

IHS relative medium size share IHS relative large share

Log housing density 0.189*** 0.092**
(0.035) (0.033)

Num. obs. 56 450 56 450
R2 0.349 0.197
Mean dep. var. 0.516 0.207
Std. errs. CBSA CBSA

City FE X X

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.01

Note:
This table displays the results of regression equation (39) for medium size apartment buildings

and large apartment buildings.

3.4 Model Fit

In this section I show how the model is able to match some key untargeted features of the

data. I first focus on measures of regulation. It is difficult to measure regulation for several

reasons. The first is that it is a multi-dimensional phenomenon. Most municipalities

regulate land use, including housing supply, with zoning codes and building codes that

can run into the hundreds of pages. These documents contain rules about what types of

housing may legally be built in different areas, as well as very specific restrictions on
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Figure 2: Binned scatter plots of model implied regulation measures and the Wharton

Regulation Index

their physical form: minimum setbacks, minimum lot sizes, maximum floor area ratios,

and many others. While the combined effect of these rules does control the amount of

housing that gets built, it is difficult to summarise this in a single number.

Not only are these regulations very high dimensional, they are also enacted differently

in different states. There is no federal database where all municipal zoning codes are

indexed, and therefore researchers who wish to study them at large scale must either

collect them by hand, or purchase them from from proprietary data aggregators. Even

then, it is very difficult to cover even close to all of the urban municipalities in the

US. These two issues have meant there have been very few attempts to measure the

tightness of regulation at the municipal level. The highest profile of these is the Wharton

Residential Land Use Regulation Index (henceforth Wharton Regulation Index) (Gyourko

et al., 2021). It was constructed from a large mail survey where nearly 2,500 municipalities

were asked in detail about different aspects of their zoning codes. The results of this

survey were then summarised into a single index to capture the overall tightness of

regulation.

My approach provides two key measures of the tightness of regulation. The first is

the markup of floorspace prices above marginal construction costs. As mentioned above,

this follows in the tradition of Glaeser and Gyourko (2002), although they conduct their

analysis at the metropolitan area level. The other measure is one minus the inferred level

of developer power, 1− ξn. This should be thought of as the institutional predisposition

towards regulation, and the markup as the realised level of regulation. Given that the

Wharton Regulation Index is defined at the municipality level, I take an average of my
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(a) Income and the Wharton Index (b) Income and developer power

Figure 3: Binned scatter plots of regulation measures and income

census tract level measures, weighted by the number of households in each tract, in

order to make them all comparable. Figure 2 shows binned scatter plots of both markups

and developer power with the Wharton Regulation Index. In both cases, my model

implied measures correlate positively with the observed measures. Municipalities with

higher average markups and lower average developer power have higher levels regulation

according to the Wharton Regulation Index. For reference, a recent paper by Bartik et al.

(2024) uses large language models to analyse zoning texts, and its two main measures of

regulation have correlations with the Wharton Index of 28% and 10% respectively.

A second key prediction of the model is the positive correlation between regulation

and average neighbourhood income. Figure 3a establishes the fact empirically: richer

municipalities have higher levels of the Wharton Regulation Index. Figure 3b then

confirms this fact with the implied measure of developer power: neighbourhoods with

lower developer power have higher average income. In the model, this relationship

arises because areas with lower developer power have a higher propensity to regulate,

regardless of the economic incentives to do so. They set tighter regulations, and therefore

price out poorer households.

As mentioned above, two key advantages of my approach to measuring regulation are

the extent of its coverage and its spatial resolution. The Wharton Regulation Index can

only produce measures at the municipality level. However, there are other approaches to

quantifying regulation at a finer spatial scale across many locations. Chief among these

are the approaches of Song (2021) and Macek (2024), who use data on the size distribution

of residential parcels and structural break detection algorithms to infer minimum lot
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sizes in different zoning districts within municipalities. This has the advantage of getting

closer to measuring an objective feature of regulation that can be summarised easily;

naturally, the downside is that it is unable to capture other dimensions of regulation.

My approach takes the other side of the trade-off. I use the simple logic of the model

to motivate markups and developer power as sufficient statistics for all of the complex

ways that regulations and legal institutions work. This allows me to make claims about

regulation at a fine spatial scale using accessible data, but has the clear downside of being

further removed from direct data on regulation itself.

A helpful visualisation of the value of this approach is to map the implied measures of

regulation. Figure 4 shows maps of developer power, ξn, for the three largest metropolitan

areas in the US. The first clear pattern is that some municipal boundaries are visible.

In particular, one can see that the central municipalities of each metropolitan area are

inferred to have substantially higher developer power than the surrounding municipal-

ities. At a stylised level, this is coming from two facts. The first is that these central

municipalities are expensive to build in, since they are very dense, so they have relatively

low markups. The second is that they have large stocks of valuable housing, which means

new construction imposes high pecuniary externalities on the owners of existing housing.

These municipalities therefore have strong incentives to block new development; the fact

markups are nonetheless relatively low implies that developer power must be high.

The converse observation holds for the less dense, richer municipalities visible in the

maps, such as Beverly Hills in Los Angeles or Evanston in Chicago. Their low density

means that the marginal cost of building a home there is very low, and yet prices are

very high. Developers therefore have a high willingness to pay for permits to build

more housing there. Even the financial interests of the property owners are not enough

to rationalise this without low political power of the developers. In general, with the

exception of the five boroughs of New York City, one can see that developer power is

almost everywhere inferred to be less than one half; that is, property owners are inferred

to have most of the political power in the urban US. This is an insight that fits folk wisdom

about the pervasiveness of ‘NIMBYism’ in municipal decision-making.

4 Counterfactuals

I now use the quantified model to study how the rise in the college wage premium, and

subsequent adjustment of regulation, has increased income segregation. In section 4.1, I

provide an overview of the solution procedures that I use to solve the model and isolate
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(a) New York (b) Los Angeles

(c) Chicago

Figure 4: Maps of developer power, ξn

the effect of endogenous regulation. In section 4.2 I then describe the counterfactual

exercises that I do, and their results.

4.1 Solving the Model

Here I provide an overview of the procedure that I use to solve the model. Importantly,

recall from definition 1 that an equilibrium is nothing more than the labour markets and

housing markets clearing in each neighbourhood, and therefore can be summarised by

arrays of wages w and prices p.

1. Start with an initial guess of wages w0
and prices p0

. Set a convergence speed
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parameter Ω.

2. Compute labour supply with equation (12), and the subsequent inverse labour

demand of firms (i.e. their willingness to pay for this amount of labour) from

equation (18). Call this inverse labour demand ŵ0
.

3. Compute the first order condition of each municipality for each of their constituent

neighbourhoods with equation (1), using the procedure described in section 3.2.5.

Call the result of this D0
.

4. Compute residual R0 ≡ 1√
|N |(1+|S|)

(∣∣∣∣∣∣ ŵ0

w0

∣∣∣∣∣∣+ ||D0||
)
.

5. Update wages according to w1
n ≡ w0

n ·
(
ŵ0

n

w0
n

)Ω
.

6. Update prices according to p1n ≡ p0n · exp (−Ω ·D0
n).

7. Iterate until Ri
is less than some pre-established tolerance.

In section 2.7, I outline a simple version of my model, and show how the effect of

a shock to the college wage premium can be decomposed into a ‘direct effect’ and an

‘amplification effect’ due to the endogenous adjustment of regulation. The direct effect

is the result of the municipality making its decisions as if the income distribution in

the neighbourhood were fixed. The amplification effect instead captures the effects of

the municipality endogenously adjusting regulation to account for the changing income

composition.

This suggests a quantitative analogue of the simple decomposition of these two effects.

Given a shock to fundamentals, I first solve the full quantitative model using the method

described above. I call this the ‘full’ solution. Any differences in outcomes between this

solution and the baseline equilibrium can be thought of as the sum of the direct effect

and the amplification effect.

I then solve the model again, this time holding fixed the income distribution in each

neighbourhood that each municipality uses when it calculates its first order condition

(equation 1). I call this the ‘restricted’ solution. Of course, the municipality is incorrect in

its belief; as it changes the quantity of housing that it permits in each neighbourhood,

households of different incomes move in and out, and change the local income distribution

in doing so. I impose that the municipalities do not internalise this in their decision-

making, and solve the rest of the model as usual. Any differences in outcomes between

this restricted solution and the baseline equilibrium can therefore be thought of as only
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the direct effect. As a result, one can read the amplification effect from differences in

outcomes between the full solution and the restricted solution.

4.2 Increasing the College Wage Premium

I conduct counterfactual exercises to explore how the rise in the college wage premium

since 1980 has increased income segregation. I run these counterfactual exercises sep-

arately for the three largest metropolitan areas in the US: New York, Los Angeles, and

Chicago. Together, these cities represent one eighth of the country’s population, and one

fifth of its GDP. Moreover, precisely because they are so large, they occupy an outsized

position in popular discourse about income segregation. I therefore consider them an

important benchmark; nonetheless, an advantage of this framework and its light data

requirements is that such counterfactuals can be extended to nearly all of the metropoli-

tan areas in the US without issue.
11
As such, I plan to do this in future work. Note that

the model does not explicitly contain multiple cities; rather, it contains one city and an

outside option representing the rest of the United States.

For each city, I conduct two solutions of the model. The first simply aims to ‘rewind’

the college wage premium back to 1980, to have an equilibrium to compare to. I am not

able to observe this equilibrium directly, because the datasets needed to invert unobserved

location fundamentals from the model are not available for the year 1980. Therefore, I

hold everything about the 2017 equilibrium fixed, except I reduce the wages of high-skill

households. In particular, I follow Cline and Kaymak (2025) who document a 75% rise

in the college wage premium between 1980 and 2017. As such, I take the college wage

premium in each neighbourhood that I recover from the 2017 equilibrium, and multiply it

by 1/1.75. I keep the wages of the low-skill households the same everywhere, so that this

only represents a reduction in high-skill wages. This leaves me with a new array of wages,

w1980
. I then solve the model, imposing that wages must be equal to w1980

. Implicitly,

this means choosing an array of productivities a1980
so that they exactly rationalisew1980

as part of the equilibrium of the model.

I then perform a restricted solution of the model as described in section 4.1. In this

case, I impose that municipalities make their regulatory decisions based on the local

income distributions recovered in the previous solution. However, productivities are

returned to their 2017 levels, which means wages for high-skill households rise again.

This restricted solution should be thought of as the direct effect of the increased college

11
The main data constraint is the RSMeans construction cost data, which does not provide location

adjustment factors for some smaller cities.
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Figure 5: Observed segregation increases explained by the increased college wage

premium

wage premium: high-skill households become richer and change their sorting patterns as

a result, but municipalities do not change the stringency of their regulation to reflect this.

To measure the outcomes of these exercises, I use a standard measure of income

sorting known as the Theil index. The index is defined as follows:

H ≡

∑
n∈N

∑
w∈W P(n,w) ln

(
P(n,w)

P(n)P(w)

)
∑

w∈W P(w) ln
(

1
P(w)

) ∈ [0, 1] (40)

where n ∈ N are neighbourhoods and w ∈ W are income quantiles. Formally, it is the

normalised Kullback-Leibler divergence of the joint distribution of income and location

choices from the product of their marginal distributions. This quantifies the informational

content of location choices about income, and vice versa. If a city is very segregated by

income, knowing the neighbourhood that a household lives in provides a great deal of

information about its income.

Figure 5 shows the effect of the wage premium shock on sorting in the three metropoli-

tan areas that I focus on. Depending on the city, the effects of the shock explain 40 to

86% of the observed increase in income segregation. The primary reason that the shock

is less able to explain the increase in segregation in Chicago is that Chicago underwent a

much higher increase in segregation during this time period than the other two cities.
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(a) New York (b) Los Angeles (c) Chicago

Figure 6: Income growth amplification with skill biased technical change

The predicted effect is remarkably similar among the three cities, suggesting that this

may be due to an idiosyncratic set of other shocks that only affected Chicago.

Consistent with the predictions of the model, regulation amplifies income segregation.

Between 6 and 29% of the total effect in Figure 5 comes from the endogenous adjustment

of regulation. This also holds when one looks at a finer spatial scale. Figure 6 plots the

growth in neighbourhood average income at the neighbourhood level with the direct

effect on the horizontal axis and the sum of the direct and amplification effects on the

vertical axis. The first pattern to note is that the points nearly all lie above the 45 degree

line; that is, the amplification effect is positive, and often quite substantial. The second

pattern is that the points are not uniformly distributed. There are clusters with higher

and lower amounts of amplification, which correspond to municipalities with differing

levels of developer power. This highlights the fact that the overall amplification of income

sorting in Figure 5 masks substantial heterogeneity in the response of regulation to the

wage premium shock.

The binned scatter plots in Figure 7 explore this heterogeneity further. They plot

the size of the amplification effect on income growth, relative to the direct effect, as

a function of developer power. The bulk of the amplification effect is coming from

the neighbourhoods with the lowest developer power, and it decays quite rapidly as

developer power increases. This should be intuitive, given the structure of the model.

Neighbourhoods where the interests of the owners of inframarginal housing are more

powerful will be regulated more according to their wishes, rather than those of the

marginal developer. As such, any changes in the price elasticity of housing demand

will pass through more into changes in markups. This can be seen in equation (2); the

relative political power of inframarginal property owners,
1−ξn
ξn

, acts as a multiplier in

the relationship between externalities on property owners and markups.
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(a) New York (b) Los Angeles (c) Chicago

Figure 7: Developer power and the size of the amplification effect

5 Conclusion

This paper studies how income inequality increases income segregation, and how housing

supply regulation endogenously adjusts to amplify this. I propose a simple theory of

endogenous housing supply regulation, and embed it in a quantitative urban model of

income sorting. I capture the fundamental tension between owners of existing housing

and developers of new housing, and show how the resulting regulation exacerbates

differences in average income across space. As neighbourhoods experience income

shocks, the elasticity of demand for housing shifts, and this changes the marginal gains

that property owners receive from restricting new construction. As a result, municipalities

change regulation and cause further changes in average income. The result is a city that

is more spatially unequal.

I show how this model can be quantified in a computationally tractable way, and bring

it to bear with publicly available data in the US. I recover a novel measure of the implied

weights on the interests of inframarginal property owners and marginal developers at

the census tract level for nearly the entire urban US. These weights correlate well with

the canonical existing measure of regulation, the Wharton Regulation Index, despite not

using any data on regulation in computing them. Using these recovered weights and the

rest of the quantified model, I show how the rise in the college wage premium since 1980

can explain 40-86% of the observed increase in income segregation, and that 6-29% of

this effect is the result of the endogenous adjustment of regulation.

The framework that I outline in this paper suggests different lines of future research.

For one, I believe that this modelling framework can be explored further for policy

implications. Zoning reform and housing affordability are currently issues that are at

the forefront of public discourse more so than they have been in the past, and yet they
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are not easy to make progress on. My model might be able both to help understand the

politics of why there is so much localised resistance to zoning reform, and how states or

the federal government might want to change local political institutions to better meet

the housing demands of the coming decades.

Another clear avenue of research concerns ξn, developer power. I currently treat

developer power as an exogenous fundamental of each neighbourhood. Of course, it is

natural to ask whether it is truly exogenous, or if it too is an equilibrium object. It is

certainly not obvious that physical geography should play any role in determining the

relative political power of different groups.

Finally, in future I plant to incorporate tenure choice and dynamic wealth accumu-

lation into the households’ block of the model. The current version is what I consider

to be the most parsimonious account of sorting and regulation that still captures what

I consider to be the relevant features of the world. Moreover, this buys computational

tractability which can then be used elsewhere in computing municipalities’ optimality

conditions for metropolitan areas with thousands of neighbourhoods. This is currently

challenging to combine with a dynamic model, but I believe there is fruitful work to be

done in that direction nonetheless.
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A Appendix - Theory

A.1 Non-Homothetic CES Derivations

In this section I derive various expressions from the household’s optimisation problem over housing and tradable

goods consumption. I suppress subscripts for brevity. Their non-homothetic consumption aggregator is given by

the following:

C(c, h) =
(
c

σ−1
σ + C(c, h)

ν
σh

σ−1
σ

) σ
σ−1

(A.1)

To derive the demands and price index, solve the cost minimisation problem with the following Lagrangian:

L = −ph− c+ µ

((
c

σ−1
σ + C

ν
σh

σ−1
σ

) σ
σ−1 − C

)
(A.2)

The first order conditions are the following:

p = µC
1+ν
σ h−

1
σ (A.3)

1 = µC
1
σ c−

1
σ (A.4)

Therefore,

h = µσC1+νp−σ (A.5)

c = µσC (A.6)

Imposing that the Lagrangian’s constraint binds and substituting in these expressions yields

C =
[
µσ−1C

σ−1
σ + C

ν
σµσ−1C

(1+ν)(σ−1)
σ p1−σ

]σ−1
σ

(A.7)

µ =
(
1 + Cνp1−σ

) 1
1−σ

(A.8)

Substituting (A.5) and (A.6) into the budget constraint definition, we have

w = ph+ c (A.9)

= p1−σµσC1+ν + µσC (A.10)

= µσC
(
p1−σCν + 1

)
(A.11)

= µσµ1−σC = µC (A.12)

C =
w

µ
(A.13)

The Lagrange multiplier therefore becomes the price index, i.e. the shadow savings of allowing a marginal unit

less of utility.

µ = P =
(
1 +

(w
P

)ν
p1−σ

) 1
1−σ

(A.14)
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Housing demand for an individual household becomes

h(p, w) =

(
p

P (p, w)

)−σ (
w

P (p, w)

)1+ν

(A.15)

A.2 Proof of Lemma 1

The non-homothetic price index takes the following form, suppressing subscripts for brevity:

P (p, w) =

(
1 +

(
w

P (p, w)

)ν
p1−σ

) 1
1−σ

(A.16)

Define

G(p, w) =

(
w

P (p, w)

)ν
p1−σ (A.17)

Taking the elasticity with respect to p,

∂ lnP

∂ ln p
=

1
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G(p, w)

1 +G(p, w)
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−ν ∂ lnP

∂ ln p
+ 1− σ

)
(A.18)

Taking the elasticity again, this time with respect to w,

∂2 lnP
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∂2 lnP

∂ ln p∂ lnw
=

Y (p, w)

1 + Y (p, w)
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1− ∂ lnP

∂ lnw
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(A.21)

where

Y (p, w) =
ν

1− σ

G(p, w)

1 +G(p, w)
(A.22)

Taking instead the elasticity of P with respect to w,

∂ lnP

∂ lnw
= Y (p, w)

(
1− ∂ lnP

∂ lnw

)
(A.23)

=
Y (p, w)

1 + Y (p, w)
(A.24)

Therefore,

∂2 lnP

∂ ln p∂ lnw
=

Y (p, w)

(1 + Y (p, w))2
1

1 +G(p, w)
(A.25)

Since G(p, w) > 0 for all p, w > 0, this expression is strictly negative if and only if Y (p, w) < 0. Y (p, w) in turn,

is the product of two terms. The second,
G(p,w)

1+G(p,w)
is always strictly positive by the same logic as before. If, as in
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the statement of the lemma, ν < 0 and σ ∈ (0, 1), then the first term is strictly negative, and Y (p, w) < 0. Note

that these conditions are satisfied by the parameters used in the quantification. As such,

∂2 lnP

∂ ln p∂ lnw
< 0 (A.26)
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B Appendix - Empirics

Parameter Description Value Source

γ Within-city preference dispersion 4 Midpoint of literature estimates

ζ Cross-city preference dispersion 2 Monte et al. (2018)

κ Utility semi-elasticity from commuting time 0.01 Ahlfeldt et al. (2015)

ψL Spillovers on the low-skilled 0.1
Macek (2024)

ψH Spillovers on the high-skilled 0.3
σ EoS btw. housing and tradable consumption 0.5

Finlay and Williams (2022)

ν Income effect on housing share −0.3
ρ EoS in production btw. low- and high-skill 1.66 Diamond (2016)

δ Land share in production 0.9 Desmet and Rappaport (2017)

ℸ2 Elasticity of mid-size apt. buildings w.r.t. density 0.19
Own estimateℸ3 Elasticity of large apt. buildings w.r.t. density 0.09

Table B.1: Summary of location-independent parameters

B.1 Summary Statistics

Figure B.1: Income distributions within and across cities.

Note: This figure shows the distribution of income across neighbourhoods within cities (in blue) and the distribution of average income

across cities (in red).
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Figure B.2: Household income and housing prices

Note: This figure is a binned scatter plot of household income against the ratio of the household’s house price to its income. It is

computed from the 2017 ACS microdata sample, accessed via IPUMS.
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B.2 Baseline Descriptives for Three Cities

Below I plot descriptive statistics for the three cities in the main part of my analysis.

(a) New York City (b) Los Angeles (c) Chicago

Figure B.3: Developer power

(a) New York City (b) Los Angeles (c) Chicago

Figure B.4: Neighbourhood income and prices

(a) New York City (b) Los Angeles (c) Chicago

Figure B.5: Prices and developer power
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(a) New York City (b) Los Angeles (c) Chicago

Figure B.6: Neighbourhood income and developer power

(a) New York City (b) Los Angeles (c) Chicago

Figure B.7: Neighbourhood income and markups
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Developer power

(1) (2) (3)

Log mean income −0.559*** −0.472*** −0.387***
(0.030) (0.027) (0.026)

Num. obs. 56 294 56 294 56 294
R2 0.232 0.490 0.684
Mean dep. var. 0.702 0.702 0.702
Std. errs. Municipality Municipality Municipality

City FE X

Muni. FE X

Figure B.8: Variance decomposition of ln((pn − c′n(hn))/pn) in the twenty largest metro areas
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(a) New York City (b) Los Angeles (c) Chicago

Figure B.9: Average income

(a) New York City (b) Los Angeles (c) Chicago

Figure B.10: College share

(a) New York City (b) Los Angeles (c) Chicago

Figure B.11: Floorspace price
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(a) New York City (b) Los Angeles (c) Chicago

Figure B.12: Median housing expenditure

(a) New York City (b) Los Angeles (c) Chicago

Figure B.13: Median housing expenditure share

(a) New York City (b) Los Angeles (c) Chicago

Figure B.14: Developer power
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B.3 Increasing the College Wage Premium

B.3.1 Bar Plots of Citywide Aggregates

Figure B.15: Effect of skill biased technical change on sorting (Theil index)

Figure B.16: Effect of skill biased technical change on low skill welfare
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Figure B.17: Effect of skill biased technical change on high skill welfare

B.3.2 Scatter Plots (Changes)
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(a) New York

(b) Los Angeles

(c) Chicago

Figure B.18: Housing growth amplification with skill biased technical change
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(a) New York

(b) Los Angeles

(c) Chicago

Figure B.19: Skill ratio growth amplification with skill biased technical change
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B.4 Discussion of Alternate Approaches to Computing Cross-Price Elasticities

The simplest approachwould be to use a finite-differences approximation. That is, for each pair of neighbourhoods

(n′, n), computing

dhn
dpn′

≈
hn
(
p1, p2, . . . , pn′ +∆, . . . , p|N |

)
− hn

(
p1, p2, . . . , pn′ , . . . , p|N |

)
∆

(B.1)

for some very small∆. This requires evaluating the city-wide housing demand function 2·|N | times. Each of these

evaluations requires solving an inner fixed point to make average incomes implied by location choices consistent

with the average incomes thatmotivate those choices. For large cities with thousands of neighbourhoods, solving

this fixed point can take over one second, and therefore evaluating the full Jacobian can take one to two hours.

This is acceptable if the Jacobian only needs to be computed once, which is the case in the model inversion,

but when solving for counterfactual scenarios computing this elasticity needs to be done many times in order

to evaluate convergence criteria. As a result, the feasibility of this whole exercise depends on computing this

Jacobian more quickly.

One may also consider using automatic differentiation software, such as ForwardDiff.jl or Zygote.jl. This is

unfortunately not possible in my setting, as evaluation of the housing demand function requires solving the

inner fixed point with endogenous amenities to make sure that they are consistent with households’ choices.

Since this is the product of a ‘while’ loop, automatic differentiation packages are not able to invert the exact

sequence of arithmetic operations involved in this procedure from the compiled code, and therefore unable to

differentiate them.
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